Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

نویسنده

  • Chengbin Deng
چکیده

As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA) can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery. This is due mainly to the absence of image endmembers associated with the mixed pixel problem. Consequently, as the most profound source of error in SMA, endmember variability has rarely been considered with coarse resolution imagery. These issues can be acute for fractional land cover mapping due to the significant spectral variations of numerous land covers across a large study area. To solve these two problems, a hierarchically object-based SMA (HOBSMA) was developed (1) to extrapolate local endmembers for regional spectral library construction; and (2) to incorporate endmember variability into linear spectral unmixing of MODIS 1-km imagery for large-scale impervious surface abundance mapping. Results show that by integrating spatial constraints from object-based image segments and endmember extrapolation techniques into multiple endmember SMA (MESMA) of coarse resolution imagery, HOBSMA improves the discriminations between urban impervious surfaces and other land covers with well-known spectral confusions (e.g., bare soil and water), and particularly provides satisfactory representations of urban fringe areas and small settlements. HOBSMA yields promising abundance results at the km-level scale with relatively high precision and small bias, which OPEN ACCESS Remote Sens. 2015, 7 9206 considerably outperforms the traditional simple mixing model and the aggregated MODIS land cover classification product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments

A modified multiple endmember spectral mixture analysis (MMESMA) approach is proposed for high-spatial-resolution hyperspectral imagery in the application of impervious surface mapping. Different from the original MESMA that usually selects one endmember spectral signature for each land-cover class, the proposed MMESMA allows the selection of multiple endmember signatures for each land-cover cl...

متن کامل

Joint Sparse Sub-Pixel Mapping Model with Endmember Variability for Remotely Sensed Imagery

Spectral unmixing and sub-pixel mapping have been used to estimate the proportion and spatial distribution of the different land-cover classes in mixed pixels at a sub-pixel scale. In the past decades, several algorithms were proposed in both categories; however, these two techniques are generally regarded as independent procedures, with most sub-pixel mapping methods using abundance maps gener...

متن کامل

Surface Urban Heat Island in Shanghai, China: Examining the Relationship between Land Surface Temperature and Impervious Surface Fractions Derived from Landsat Etm+ Imagery

This paper investigates the relationship between the surface urban heat islands (SUHI) and the percent impervious surface area (%ISA) in Shanghai, China. The %ISA was characterized from a Landsat-7 ETM+ multispectral dataset using the Linear Mixture Spectral Analysis (LMSA). Several critical steps being taken to derive %ISA were discussed, including atmospheric and geometric correction, water f...

متن کامل

Mapping Impervious Surface Area Using High Resolution Imagery: a Comparison of Object-based and per Pixel Classification

Impervious surface area is a key indicator of environmental quality. Satellite remote sensing of impervious surface has focused on subpixel analysis via various forms of statistical estimation, subpixel classification, and spectral mixture analysis, using medium resolution Landsat TM or ETM+ data. Maps of impervious surface area from these studies provide useful inputs to planning and managemen...

متن کامل

A Comparison of Spectral Mixture Analysis Methods for Urban Landscape Using Landsat Etm+ Data: Los Angeles, Ca

Although spectral mixture analysis has been widely used for mapping the abundances of physical components of urban surface with moderate spatial resolution satellite imagery recently, the spectral heterogeneity of urban land surface has still posed a great challenge to accurately estimate fractions of surface materials within a pixel. How to dealing with the highly spectral heterogeneous nature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015